Correlation tests with bootstrap
# credit to bootstrapping tutorial https://www.datawim.com/post/bootstrapping-correlation-coefficients-in-r/
library(dplyr)
library(tidyverse)
library(tidymodels)
library(rstatix)
library(ggpubr)
metadataFull<-read.csv(file="metadata_full.csv",header=TRUE)
names(metadataFull)[names(metadataFull) == "biteRateChange"] <- "rawbiteRateChange"
metadataFull$biteRateChange = metadataFull$rawbiteRateChange*(-1)
##thigmotaxis metabolic rate
point <- metadataFull %>%
group_by(treatmentOrder) %>%
cor_test(Thigmotaxis, metabolicRate, method = "pearson")
point
boot_corr <- metadataFull %>%
nest(data = -c(treatmentOrder)) %>% # grouping the treatments
mutate(boots = map(data, ~bootstraps(.x, times = 2000, apparent = FALSE))) %>% # defining bootstraps
unnest(boots) %>% # un-nesting bootsrapped data lists
mutate(correlations = map(splits, ~cor_test(Thigmotaxis, metabolicRate, data = analysis((.))))) # performing correlation
corr <- boot_corr %>%
unnest(correlations) %>% # unnesting tidied data frames
select(-data, -splits, -id)
corr
#confidence intervals from bootstrap
CI <- corr %>%
group_by(treatmentOrder) %>%
summarise(lwr_CI = quantile(cor, 0.025),
.estimate = median(cor),
upr_CI = quantile(cor, 0.975))
##speed metabolic rate
point1 <- metadataFull %>%
group_by(treatmentOrder) %>%
cor_test(metabolicRate, Speed, method = "pearson")
point1
boot_corr <- metadataFull %>%
nest(data = -c(treatmentOrder)) %>% # grouping the treatments
mutate(boots = map(data, ~bootstraps(.x, times = 2000, apparent = FALSE))) %>% # defining bootstraps
unnest(boots) %>% # un-nesting bootsrapped data lists
mutate(correlations = map(splits, ~cor_test(Speed, metabolicRate, data = analysis((.))))) # performing correlation
corr <- boot_corr %>%
unnest(correlations) %>% # unnesting tidied data frames
select(-data, -splits, -id)
#confidence intervals from bootstrap
CI_1 <- corr %>%
group_by(treatmentOrder) %>%
summarise(lwr_CI = quantile(cor, 0.025),
.estimate = median(cor),
upr_CI = quantile(cor, 0.975))
##biteRate Thigmotaxis
point2 <- metadataFull %>%
group_by(treatmentOrder) %>%
cor_test(biteRateChange, Thigmotaxis, method = "pearson")
point2
boot_corr <- metadataFull %>%
nest(data = -c(treatmentOrder)) %>% # grouping the treatments
mutate(boots = map(data, ~bootstraps(.x, times = 2000, apparent = FALSE))) %>% # defining bootstraps
unnest(boots) %>% # un-nesting bootsrapped data lists
mutate(correlations = map(splits, ~cor_test(biteRateChange, Thigmotaxis, data = analysis((.))))) # performing correlation
corr <- boot_corr %>%
unnest(correlations) %>% # unnesting tidied data frames
select(-data, -splits, -id)
#confidence intervals from bootstrap
CI_2 <- corr %>%
group_by(treatmentOrder) %>%
summarise(lwr_CI = quantile(cor, 0.025),
.estimate = median(cor),
upr_CI = quantile(cor, 0.975))
##biteRate Speed
point3 <- metadataFull %>%
group_by(treatmentOrder) %>%
cor_test(biteRateChange, Speed, method = "pearson")
point3
boot_corr <- metadataFull %>%
nest(data = -c(treatmentOrder)) %>% # grouping the treatments
mutate(boots = map(data, ~bootstraps(.x, times = 2000, apparent = FALSE))) %>% # defining bootstraps
unnest(boots) %>% # un-nesting bootsrapped data lists
mutate(correlations = map(splits, ~cor_test(biteRateChange, Speed, data = analysis((.))))) # performing correlation
corr <- boot_corr %>%
unnest(correlations) %>% # unnesting tidied data frames
select(-data, -splits, -id)
#confidence intervals from bootstrap
CI_3 <- corr %>%
group_by(treatmentOrder) %>%
summarise(lwr_CI = quantile(cor, 0.025),
.estimate = median(cor),
upr_CI = quantile(cor, 0.975))
##biteRate metabolic rate
point4 <- metadataFull %>%
group_by(treatmentOrder) %>%
cor_test(biteRateChange, metabolicRate, method = "pearson")
point4
boot_corr <- metadataFull %>%
nest(data = -c(treatmentOrder)) %>% # grouping the treatments
mutate(boots = map(data, ~bootstraps(.x, times = 2000, apparent = FALSE))) %>% # defining bootstraps
unnest(boots) %>% # un-nesting bootsrapped data lists
mutate(correlations = map(splits, ~cor_test(biteRateChange, metabolicRate, data = analysis((.))))) # performing correlation
corr <- boot_corr %>%
unnest(correlations) %>% # unnesting tidied data frames
select(-data, -splits, -id)
#confidence intervals from bootstrap
CI_4 <- corr %>%
group_by(treatmentOrder) %>%
summarise(lwr_CI = quantile(cor, 0.025),
.estimate = median(cor),
upr_CI = quantile(cor, 0.975))
##Thigmotaxis Speed
point5 <- metadataFull %>%
group_by(treatmentOrder) %>%
cor_test(Thigmotaxis, Speed, method = "pearson")
point5
boot_corr <- metadataFull %>%
nest(data = -c(treatmentOrder)) %>% # grouping the treatments
mutate(boots = map(data, ~bootstraps(.x, times = 2000, apparent = FALSE))) %>% # defining bootstraps
unnest(boots) %>% # un-nesting bootsrapped data lists
mutate(correlations = map(splits, ~cor_test(Thigmotaxis, Speed, data = analysis((.))))) # performing correlation
corr <- boot_corr %>%
unnest(correlations) %>% # unnesting tidied data frames
select(-data, -splits, -id)
#confidence intervals from bootstrap
CI_5 <- corr %>%
group_by(treatmentOrder) %>%
summarise(lwr_CI = quantile(cor, 0.025),
.estimate = median(cor),
upr_CI = quantile(cor, 0.975))
pearsonsResults<-bind_rows(point, point5, point1, point2, point3, point4)
write.csv(pearsonsResults, file = "pearsonsCorrelationResults.csv")
GLMMs
#treatments on behaviours
model4<-lmer(metabolicRate~ treatment + (1|aquarium), data = metadataFull)
summary(model4)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: metabolicRate ~ treatment + (1 | aquarium)
## Data: metadataFull
##
## REML criterion at convergence: -42.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.67373 -0.52076 0.00754 0.46166 2.49007
##
## Random effects:
## Groups Name Variance Std.Dev.
## aquarium (Intercept) 0.01756 0.1325
## Residual 0.02236 0.1495
## Number of obs: 107, groups: aquarium, 49
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 0.39653 0.04810 68.97997 8.245 7.15e-12 ***
## treatmenthigh 0.10381 0.06346 66.30614 1.636 0.107
## treatmentlow 0.05787 0.06529 74.35471 0.886 0.378
## treatmentmedium 0.07914 0.06854 54.41979 1.155 0.253
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) trtmnth trtmntl
## treatmnthgh -0.728
## treatmentlw -0.678 0.493
## treatmntmdm -0.702 0.511 0.476
model6<-lmer(biteRateChange~treatment+(1|aquarium), data = metadataFull)
summary(model6)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: biteRateChange ~ treatment + (1 | aquarium)
## Data: metadataFull
##
## REML criterion at convergence: 745.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.67315 -0.57976 0.02409 0.70177 2.44678
##
## Random effects:
## Groups Name Variance Std.Dev.
## aquarium (Intercept) 1.008 1.004
## Residual 71.048 8.429
## Number of obs: 107, groups: aquarium, 49
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 7.8986 1.8222 48.9878 4.335 7.24e-05 ***
## treatmenthigh -7.2096 2.3684 45.2299 -3.044 0.00388 **
## treatmentlow 0.2523 2.4768 46.5907 0.102 0.91929
## treatmentmedium -5.6741 2.4591 38.2166 -2.307 0.02654 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) trtmnth trtmntl
## treatmnthgh -0.769
## treatmentlw -0.735 0.565
## treatmntmdm -0.741 0.570 0.544
model7<-lmer(Thigmotaxis~treatment+(1|aquarium), data = metadataFull)
## boundary (singular) fit: see help('isSingular')
summary(model7)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Thigmotaxis ~ treatment + (1 | aquarium)
## Data: metadataFull
##
## REML criterion at convergence: -21.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.96059 -0.54052 0.08709 0.74284 1.62195
##
## Random effects:
## Groups Name Variance Std.Dev.
## aquarium (Intercept) 0.00000 0.0000
## Residual 0.04166 0.2041
## Number of obs: 107, groups: aquarium, 49
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 0.56897 0.04352 103.00000 13.075 <2e-16 ***
## treatmenthigh 0.03533 0.05653 103.00000 0.625 0.533
## treatmentlow 0.04970 0.05913 103.00000 0.841 0.403
## treatmentmedium -0.02538 0.05862 103.00000 -0.433 0.666
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) trtmnth trtmntl
## treatmnthgh -0.770
## treatmentlw -0.736 0.567
## treatmntmdm -0.742 0.571 0.546
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
model8<-lmer(Speed~treatment+(1|aquarium), data = metadataFull)
## boundary (singular) fit: see help('isSingular')
summary(model8)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Speed ~ treatment + (1 | aquarium)
## Data: metadataFull
##
## REML criterion at convergence: 45.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.16107 -0.67061 -0.00073 0.63261 2.82908
##
## Random effects:
## Groups Name Variance Std.Dev.
## aquarium (Intercept) 0.00000 0.0000
## Residual 0.08047 0.2837
## Number of obs: 107, groups: aquarium, 49
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 0.65747 0.06048 103.00000 10.871 <2e-16 ***
## treatmenthigh 0.05829 0.07856 103.00000 0.742 0.460
## treatmentlow 0.02056 0.08217 103.00000 0.250 0.803
## treatmentmedium -0.03163 0.08147 103.00000 -0.388 0.699
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) trtmnth trtmntl
## treatmnthgh -0.770
## treatmentlw -0.736 0.567
## treatmntmdm -0.742 0.571 0.546
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
#alpha diversity Shannon and Chao1
alphaDiversitySnails <-read.table("metadata_alphaDiversity.txt", row.names="Row.names", header = TRUE)
# shannon
model1<-lmer(Shannon~scaledSpeed*treatmentOrder + scaledThig*treatmentOrder + scaledmetRate*treatmentOrder+ scaledBiteRate*treatmentOrder +treatmentOrder+ (1|aquarium), data=alphaDiversitySnails, na.action=na.fail)
summary(model1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## Shannon ~ scaledSpeed * treatmentOrder + scaledThig * treatmentOrder +
## scaledmetRate * treatmentOrder + scaledBiteRate * treatmentOrder +
## treatmentOrder + (1 | aquarium)
## Data: alphaDiversitySnails
##
## REML criterion at convergence: 128.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.7813 -0.3677 0.1397 0.4820 1.8566
##
## Random effects:
## Groups Name Variance Std.Dev.
## aquarium (Intercept) 0.04712 0.2171
## Residual 0.11361 0.3371
## Number of obs: 94, groups: aquarium, 46
##
## Fixed effects:
## Estimate Std. Error df t value
## (Intercept) 3.861159 0.114882 51.991051 33.610
## scaledSpeed 0.014103 0.087381 72.739137 0.161
## treatmentOrderlow 0.034565 0.159318 47.289894 0.217
## treatmentOrdermedium 0.356660 0.154331 44.927757 2.311
## treatmentOrderxHigh 0.253167 0.156532 44.732861 1.617
## scaledThig 0.040158 0.113689 72.160650 0.353
## scaledmetRate 0.125011 0.109043 73.921213 1.146
## scaledBiteRate -0.098595 0.090266 72.847669 -1.092
## scaledSpeed:treatmentOrderlow 0.062353 0.148094 64.376065 0.421
## scaledSpeed:treatmentOrdermedium 0.051362 0.121960 65.819225 0.421
## scaledSpeed:treatmentOrderxHigh -0.118113 0.125816 73.217396 -0.939
## treatmentOrderlow:scaledThig 0.036196 0.143218 73.216544 0.253
## treatmentOrdermedium:scaledThig 0.150332 0.150083 73.936446 1.002
## treatmentOrderxHigh:scaledThig -0.009395 0.145759 73.846197 -0.064
## treatmentOrderlow:scaledmetRate -0.198571 0.139511 72.793567 -1.423
## treatmentOrdermedium:scaledmetRate 0.058081 0.143865 72.873307 0.404
## treatmentOrderxHigh:scaledmetRate -0.273563 0.160020 71.853472 -1.710
## treatmentOrderlow:scaledBiteRate 0.156899 0.146560 69.677525 1.071
## treatmentOrdermedium:scaledBiteRate -0.023406 0.143772 72.157449 -0.163
## treatmentOrderxHigh:scaledBiteRate 0.101478 0.129412 73.987235 0.784
## Pr(>|t|)
## (Intercept) <2e-16 ***
## scaledSpeed 0.8722
## treatmentOrderlow 0.8292
## treatmentOrdermedium 0.0255 *
## treatmentOrderxHigh 0.1128
## scaledThig 0.7249
## scaledmetRate 0.2553
## scaledBiteRate 0.2783
## scaledSpeed:treatmentOrderlow 0.6751
## scaledSpeed:treatmentOrdermedium 0.6750
## scaledSpeed:treatmentOrderxHigh 0.3509
## treatmentOrderlow:scaledThig 0.8012
## treatmentOrdermedium:scaledThig 0.3198
## treatmentOrderxHigh:scaledThig 0.9488
## treatmentOrderlow:scaledmetRate 0.1589
## treatmentOrdermedium:scaledmetRate 0.6876
## treatmentOrderxHigh:scaledmetRate 0.0917 .
## treatmentOrderlow:scaledBiteRate 0.2881
## treatmentOrdermedium:scaledBiteRate 0.8711
## treatmentOrderxHigh:scaledBiteRate 0.4355
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE) or
## vcov(x) if you need it
dd<-dredge(model1, subset= ~treatmentOrder, evaluate=TRUE, rank=AICc)
## Warning in dredge(model1, subset = ~treatmentOrder, evaluate = TRUE, rank =
## AICc): comparing models fitted by REML
## Fixed term is "(Intercept)"
dd
## Global model call: lmer(formula = Shannon ~ scaledSpeed * treatmentOrder + scaledThig *
## treatmentOrder + scaledmetRate * treatmentOrder + scaledBiteRate *
## treatmentOrder + treatmentOrder + (1 | aquarium), data = alphaDiversitySnails,
## na.action = na.fail)
## ---
## Model selection table
## (Int) sBR scR scS scT trO sBR:trO scR:trO scS:trO
## 17 3.755 +
## 25 3.760 0.07368 +
## 19 3.773 0.04742 +
## 18 3.774 -0.03086 +
## 21 3.753 0.015240 +
## 26 3.774 -0.02404 0.07208 +
## 27 3.766 0.01933 0.06701 +
## 29 3.760 -0.007105 0.07587 +
## 20 3.795 -0.03570 0.05055 +
## 23 3.771 0.04582 0.009522 +
## 83 3.817 0.18390 + +
## 22 3.771 -0.02857 0.009464 +
## 281 3.766 0.13780 +
## 28 3.784 -0.02714 0.02318 0.06393 +
## 30 3.777 -0.02692 -0.012420 0.07555 +
## 91 3.804 0.13450 0.07091 + +
## 31 3.767 0.01950 -0.007846 0.06939 +
## 50 3.851 -0.14850 + +
## 24 3.794 -0.03539 0.05006 0.001703 +
## 149 3.746 0.069630 + +
## 84 3.829 -0.02513 0.17700 + +
## 87 3.814 0.18060 0.011570 + +
## 282 3.787 -0.03583 0.12580 +
## 283 3.773 0.02059 0.12870 +
## 285 3.767 -0.009555 0.14470 +
## 157 3.760 0.021480 0.08079 + +
## 58 3.835 -0.11830 0.06231 + +
## 32 3.788 -0.03063 0.02420 -0.014160 0.06758 +
## 92 3.814 -0.01813 0.13070 0.06948 + +
## 95 3.805 0.13500 -0.005435 0.07257 + +
## 52 3.858 -0.14070 0.03568 + +
## 54 3.848 -0.14630 0.010900 + +
## 151 3.763 0.04426 0.061550 + +
## 150 3.769 -0.03840 0.065880 + +
## 88 3.827 -0.02350 0.17550 0.006771 + +
## 284 3.799 -0.04129 0.02831 0.11150 +
## 286 3.790 -0.03739 -0.013390 0.13490 +
## 287 3.774 0.02049 -0.009634 0.13580 +
## 158 3.781 -0.03520 0.018530 0.07976 + +
## 159 3.765 0.01680 0.021710 0.07525 + +
## 60 3.839 -0.11740 0.01458 0.05752 + +
## 62 3.836 -0.11880 -0.007538 0.06469 + +
## 96 3.816 -0.02043 0.13120 -0.009447 0.07194 + +
## 152 3.793 -0.04488 0.04960 0.056270 + +
## 56 3.856 -0.13990 0.03450 0.005422 + +
## 347 3.802 0.12370 0.08671 + +
## 116 3.880 -0.11510 0.15240 + + +
## 215 3.809 0.17210 0.041890 + + +
## 288 3.803 -0.04302 0.02855 -0.014150 0.12110 +
## 160 3.791 -0.03868 0.02292 0.018600 0.07220 + +
## 314 3.825 -0.09853 0.10370 + +
## 413 3.772 -0.020410 0.15010 + +
## 64 3.840 -0.11790 0.01534 -0.008814 0.06009 + +
## 124 3.853 -0.08828 0.10760 0.07558 + + +
## 223 3.807 0.12520 -0.002233 0.08451 + + +
## 348 3.823 -0.03645 0.12230 0.07462 + +
## 182 3.837 -0.13800 0.052120 + + +
## 351 3.801 0.12390 0.001415 0.08583 + +
## 120 3.877 -0.11360 0.14970 0.010790 + + +
## 216 3.827 -0.03286 0.16360 0.039660 + + +
## 414 3.796 -0.04265 -0.013260 0.13100 + +
## 316 3.833 -0.09810 0.02555 0.09270 + +
## 415 3.778 0.01882 -0.017920 0.14030 + +
## 318 3.826 -0.09735 -0.007068 0.10930 + +
## 190 3.831 -0.11240 0.015950 0.06732 + + +
## 224 3.822 -0.02775 0.11910 -0.003415 0.08309 + + +
## 128 3.853 -0.08868 0.10810 -0.006084 0.07738 + + +
## 184 3.846 -0.13140 0.03462 0.047150 + + +
## 352 3.823 -0.03675 0.12150 -0.002383 0.07677 + +
## 416 3.807 -0.04911 0.02932 -0.008116 0.11280 + +
## 320 3.833 -0.09669 0.02584 -0.008290 0.09920 + +
## 192 3.835 -0.11130 0.01432 0.016190 0.06301 + + +
## 380 3.858 -0.09606 0.12020 0.05463 + + +
## 479 3.806 0.12450 -0.001953 0.08558 + + +
## 248 3.871 -0.11000 0.14440 0.032570 + + + +
## 446 3.828 -0.09794 -0.005017 0.10590 + + +
## 256 3.855 -0.08539 0.10410 -0.008733 0.08432 + + + +
## 384 3.858 -0.09714 0.12190 0.006764 0.04899 + + +
## 480 3.830 -0.04340 0.12470 0.005244 0.06558 + + +
## 448 3.834 -0.09804 0.02548 -0.001296 0.09260 + + +
## 512 3.861 -0.09859 0.12500 0.014100 0.04016 + + + +
## scT:trO df logLik AICc delta weight
## 17 6 -49.802 112.6 0.00 0.746
## 25 7 -50.386 116.1 3.50 0.129
## 19 7 -51.441 118.2 5.61 0.045
## 18 7 -51.751 118.8 6.23 0.033
## 21 7 -52.019 119.3 6.77 0.025
## 26 8 -52.427 122.5 9.98 0.005
## 27 8 -52.461 122.6 10.05 0.005
## 29 8 -52.624 122.9 10.37 0.004
## 20 8 -53.311 124.3 11.75 0.002
## 23 8 -53.695 125.1 12.51 0.001
## 83 10 -51.271 125.2 12.62 0.001
## 22 8 -53.982 125.7 13.09 0.001
## 281 + 10 -52.646 127.9 15.37 0.000
## 28 9 -54.453 129.0 16.48 0.000
## 30 9 -54.612 129.4 16.80 0.000
## 91 11 -52.101 129.4 16.85 0.000
## 31 9 -54.693 129.5 16.96 0.000
## 50 10 -53.928 130.5 17.94 0.000
## 24 9 -55.556 131.3 18.68 0.000
## 149 10 -54.531 131.7 19.14 0.000
## 84 11 -53.297 131.8 19.24 0.000
## 87 11 -53.533 132.3 19.72 0.000
## 282 + 11 -54.491 134.2 21.63 0.000
## 283 + 11 -54.705 134.6 22.06 0.000
## 285 + 11 -54.807 134.8 22.26 0.000
## 157 11 -55.006 135.2 22.66 0.000
## 58 11 -55.105 135.4 22.86 0.000
## 32 10 -56.621 135.9 23.32 0.000
## 92 12 -54.199 136.3 23.68 0.000
## 95 12 -54.370 136.6 24.02 0.000
## 52 11 -55.796 136.8 24.24 0.000
## 54 11 -56.149 137.5 24.95 0.000
## 151 11 -56.243 137.7 25.13 0.000
## 150 11 -56.341 137.9 25.33 0.000
## 88 12 -55.554 139.0 26.39 0.000
## 284 + 12 -56.450 140.8 28.18 0.000
## 286 + 12 -56.623 141.1 28.53 0.000
## 287 + 12 -56.862 141.6 29.01 0.000
## 158 12 -56.873 141.6 29.03 0.000
## 159 12 -57.074 142.0 29.43 0.000
## 60 12 -57.188 142.2 29.66 0.000
## 62 12 -57.307 142.5 29.89 0.000
## 96 13 -56.423 143.4 30.83 0.000
## 152 12 -57.931 143.7 31.14 0.000
## 56 12 -58.026 143.9 31.33 0.000
## 347 + 14 -55.421 144.2 31.59 0.000
## 116 14 -55.831 145.0 32.41 0.000
## 215 14 -56.293 145.9 33.33 0.000
## 288 + 13 -58.574 147.7 35.13 0.000
## 160 13 -58.875 148.3 35.73 0.000
## 314 + 14 -57.526 148.4 35.80 0.000
## 413 + 14 -57.554 148.4 35.85 0.000
## 64 13 -59.374 149.3 36.73 0.000
## 124 15 -56.616 149.4 36.82 0.000
## 223 15 -56.710 149.6 37.00 0.000
## 348 + 15 -57.247 150.6 38.08 0.000
## 182 14 -58.688 150.7 38.12 0.000
## 351 + 15 -57.601 151.4 38.79 0.000
## 120 15 -58.061 152.3 39.70 0.000
## 216 15 -58.188 152.5 39.96 0.000
## 414 + 15 -59.275 154.7 42.13 0.000
## 316 + 15 -59.498 155.1 42.58 0.000
## 415 + 15 -59.591 155.3 42.77 0.000
## 318 + 15 -59.663 155.5 42.91 0.000
## 190 15 -59.781 155.7 43.15 0.000
## 224 16 -58.680 156.4 43.86 0.000
## 128 16 -58.845 156.8 44.19 0.000
## 184 15 -60.554 157.3 44.69 0.000
## 352 + 16 -59.417 157.9 45.33 0.000
## 416 + 16 -61.188 161.4 48.87 0.000
## 320 + 16 -61.625 162.3 49.75 0.000
## 192 16 -61.828 162.7 50.15 0.000
## 380 + 18 -59.539 164.2 51.63 0.000
## 479 + 18 -59.996 165.1 52.54 0.000
## 248 18 -60.851 166.8 54.25 0.000
## 446 + 18 -62.298 169.7 57.15 0.000
## 256 19 -61.435 171.1 58.57 0.000
## 384 + 19 -61.679 171.6 59.06 0.000
## 480 + 19 -61.697 171.7 59.09 0.000
## 448 + 19 -64.232 176.7 64.16 0.000
## 512 + 22 -64.143 186.5 73.97 0.000
## Models ranked by AICc(x)
## Random terms (all models):
## 1 | aquarium
ddAIC_S<-subset(dd, delta < 7)
ddAIC_S
## Global model call: lmer(formula = Shannon ~ scaledSpeed * treatmentOrder + scaledThig *
## treatmentOrder + scaledmetRate * treatmentOrder + scaledBiteRate *
## treatmentOrder + treatmentOrder + (1 | aquarium), data = alphaDiversitySnails,
## na.action = na.fail)
## ---
## Model selection table
## (Int) sBR scR scS scT trO df logLik AICc delta weight
## 17 3.755 + 6 -49.802 112.6 0.00 0.762
## 25 3.760 0.07368 + 7 -50.386 116.1 3.50 0.132
## 19 3.773 0.04742 + 7 -51.441 118.2 5.61 0.046
## 18 3.774 -0.03086 + 7 -51.751 118.8 6.23 0.034
## 21 3.753 0.01524 + 7 -52.019 119.3 6.77 0.026
## Models ranked by AICc(x)
## Random terms (all models):
## 1 | aquarium
get.models(ddAIC_S, subset=TRUE)
## $`17`
## Linear mixed model fit by REML ['lmerModLmerTest']
## Formula: Shannon ~ treatmentOrder + (1 | aquarium)
## Data: alphaDiversitySnails
## REML criterion at convergence: 99.6048
## Random effects:
## Groups Name Std.Dev.
## aquarium (Intercept) 0.2195
## Residual 0.3420
## Number of obs: 94, groups: aquarium, 46
## Fixed Effects:
## (Intercept) treatmentOrderlow treatmentOrdermedium
## 3.7550 0.1813 0.4614
## treatmentOrderxHigh
## 0.3066
##
## $`25`
## Linear mixed model fit by REML ['lmerModLmerTest']
## Formula: Shannon ~ scaledThig + treatmentOrder + (1 | aquarium)
## Data: alphaDiversitySnails
## REML criterion at convergence: 100.7712
## Random effects:
## Groups Name Std.Dev.
## aquarium (Intercept) 0.2008
## Residual 0.3434
## Number of obs: 94, groups: aquarium, 46
## Fixed Effects:
## (Intercept) scaledThig treatmentOrderlow
## 3.75953 0.07368 0.16574
## treatmentOrdermedium treatmentOrderxHigh
## 0.47017 0.28962
##
## $`19`
## Linear mixed model fit by REML ['lmerModLmerTest']
## Formula: Shannon ~ scaledmetRate + treatmentOrder + (1 | aquarium)
## Data: alphaDiversitySnails
## REML criterion at convergence: 102.8816
## Random effects:
## Groups Name Std.Dev.
## aquarium (Intercept) 0.2290
## Residual 0.3379
## Number of obs: 94, groups: aquarium, 46
## Fixed Effects:
## (Intercept) scaledmetRate treatmentOrderlow
## 3.77257 0.04742 0.16943
## treatmentOrdermedium treatmentOrderxHigh
## 0.43704 0.27805
##
## $`18`
## Linear mixed model fit by REML ['lmerModLmerTest']
## Formula: Shannon ~ scaledBiteRate + treatmentOrder + (1 | aquarium)
## Data: alphaDiversitySnails
## REML criterion at convergence: 103.5021
## Random effects:
## Groups Name Std.Dev.
## aquarium (Intercept) 0.2148
## Residual 0.3452
## Number of obs: 94, groups: aquarium, 46
## Fixed Effects:
## (Intercept) scaledBiteRate treatmentOrderlow
## 3.77358 -0.03086 0.17215
## treatmentOrdermedium treatmentOrderxHigh
## 0.43791 0.27159
##
## $`21`
## Linear mixed model fit by REML ['lmerModLmerTest']
## Formula: Shannon ~ scaledSpeed + treatmentOrder + (1 | aquarium)
## Data: alphaDiversitySnails
## REML criterion at convergence: 104.0373
## Random effects:
## Groups Name Std.Dev.
## aquarium (Intercept) 0.2199
## Residual 0.3439
## Number of obs: 94, groups: aquarium, 46
## Fixed Effects:
## (Intercept) scaledSpeed treatmentOrderlow
## 3.75293 0.01524 0.18290
## treatmentOrdermedium treatmentOrderxHigh
## 0.46711 0.30538
##
## attr(,"rank")
## function (x)
## do.call("rank", list(x))
## <environment: 0x0000024bc4c41868>
## attr(,"call")
## AICc(x)
## attr(,"class")
## [1] "function" "rankFunction"
## attr(,"beta")
## [1] "none"
ddMAc<-model.avg(ddAIC_S, subset= delta <7)
summary(ddMAc)
##
## Call:
## model.avg(object = ddAIC_S, subset = delta < 7)
##
## Component model call:
## lmer(formula = Shannon ~ <5 unique rhs>, data = alphaDiversitySnails,
## na.action = na.fail)
##
## Component models:
## df logLik AICc delta weight
## 5 6 -49.80 112.57 0.00 0.76
## 45 7 -50.39 116.07 3.50 0.13
## 25 7 -51.44 118.18 5.61 0.05
## 15 7 -51.75 118.80 6.23 0.03
## 35 7 -52.02 119.34 6.77 0.03
##
## Term codes:
## scaledBiteRate scaledmetRate scaledSpeed scaledThig treatmentOrder
## 1 2 3 4 5
##
## Model-averaged coefficients:
## (full average)
## Estimate Std. Error Adjusted SE z value Pr(>|z|)
## (Intercept) 3.7570045 0.0985995 0.0999745 37.580 < 2e-16 ***
## treatmentOrderlow 0.1784445 0.1425961 0.1445863 1.234 0.21714
## treatmentOrdermedium 0.4607763 0.1390980 0.1410369 3.267 0.00109 **
## treatmentOrderxHigh 0.3017943 0.1351256 0.1370051 2.203 0.02761 *
## scaledThig 0.0097428 0.0286678 0.0287661 0.339 0.73484
## scaledmetRate 0.0021830 0.0136882 0.0137798 0.158 0.87413
## scaledBiteRate -0.0010418 0.0100162 0.0101139 0.103 0.91796
## scaledSpeed 0.0003936 0.0069620 0.0070484 0.056 0.95547
##
## (conditional average)
## Estimate Std. Error Adjusted SE z value Pr(>|z|)
## (Intercept) 3.75700 0.09860 0.09997 37.580 < 2e-16 ***
## treatmentOrderlow 0.17844 0.14260 0.14459 1.234 0.21714
## treatmentOrdermedium 0.46078 0.13910 0.14104 3.267 0.00109 **
## treatmentOrderxHigh 0.30179 0.13513 0.13701 2.203 0.02761 *
## scaledThig 0.07368 0.03878 0.03933 1.873 0.06102 .
## scaledmetRate 0.04742 0.04387 0.04449 1.066 0.28648
## scaledBiteRate -0.03086 0.04530 0.04594 0.672 0.50164
## scaledSpeed 0.01524 0.04062 0.04120 0.370 0.71147
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
rm(dd, ddAIC_S, ddMAc)
# chao1
model2<-lmer(Chao1~scaledSpeed*treatmentOrder + scaledThig*treatmentOrder + scaledmetRate*treatmentOrder+ scaledBiteRate*treatmentOrder +treatmentOrder+ (1|aquarium), data=alphaDiversitySnails, na.action=na.fail)
summary(model2)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Chao1 ~ scaledSpeed * treatmentOrder + scaledThig * treatmentOrder +
## scaledmetRate * treatmentOrder + scaledBiteRate * treatmentOrder +
## treatmentOrder + (1 | aquarium)
## Data: alphaDiversitySnails
##
## REML criterion at convergence: 1118.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.7213 -0.6180 -0.1688 0.3949 3.4344
##
## Random effects:
## Groups Name Variance Std.Dev.
## aquarium (Intercept) 797.5 28.24
## Residual 96886.7 311.27
## Number of obs: 94, groups: aquarium, 46
##
## Fixed effects:
## Estimate Std. Error df t value
## (Intercept) 597.295 83.767 52.003 7.130
## scaledSpeed -6.408 71.491 73.664 -0.090
## treatmentOrderlow -21.965 114.732 49.487 -0.191
## treatmentOrdermedium 170.050 109.707 44.012 1.550
## treatmentOrderxHigh 46.127 110.978 42.990 0.416
## scaledThig 80.115 89.986 73.663 0.890
## scaledmetRate -9.905 87.632 73.983 -0.113
## scaledBiteRate -5.433 71.672 73.767 -0.076
## scaledSpeed:treatmentOrderlow -31.325 125.804 67.662 -0.249
## scaledSpeed:treatmentOrdermedium 161.488 102.149 72.656 1.581
## scaledSpeed:treatmentOrderxHigh -18.609 100.959 72.280 -0.184
## treatmentOrderlow:scaledThig 26.832 117.500 72.770 0.228
## treatmentOrdermedium:scaledThig 19.322 120.979 73.959 0.160
## treatmentOrderxHigh:scaledThig -24.745 117.652 73.925 -0.210
## treatmentOrderlow:scaledmetRate -46.855 110.141 72.956 -0.425
## treatmentOrdermedium:scaledmetRate 94.729 116.973 74.000 0.810
## treatmentOrderxHigh:scaledmetRate -123.250 124.655 69.739 -0.989
## treatmentOrderlow:scaledBiteRate 19.375 122.499 70.207 0.158
## treatmentOrdermedium:scaledBiteRate -91.362 116.991 73.884 -0.781
## treatmentOrderxHigh:scaledBiteRate 53.037 102.633 71.293 0.517
## Pr(>|t|)
## (Intercept) 3.06e-09 ***
## scaledSpeed 0.929
## treatmentOrderlow 0.849
## treatmentOrdermedium 0.128
## treatmentOrderxHigh 0.680
## scaledThig 0.376
## scaledmetRate 0.910
## scaledBiteRate 0.940
## scaledSpeed:treatmentOrderlow 0.804
## scaledSpeed:treatmentOrdermedium 0.118
## scaledSpeed:treatmentOrderxHigh 0.854
## treatmentOrderlow:scaledThig 0.820
## treatmentOrdermedium:scaledThig 0.874
## treatmentOrderxHigh:scaledThig 0.834
## treatmentOrderlow:scaledmetRate 0.672
## treatmentOrdermedium:scaledmetRate 0.421
## treatmentOrderxHigh:scaledmetRate 0.326
## treatmentOrderlow:scaledBiteRate 0.875
## treatmentOrdermedium:scaledBiteRate 0.437
## treatmentOrderxHigh:scaledBiteRate 0.607
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE) or
## vcov(x) if you need it
model2<-lmer(Chao1~scaledSpeed + scaledThig + scaledmetRate+ scaledBiteRate +treatmentOrder+ (1|aquarium), data=alphaDiversitySnails, na.action=na.fail)
## boundary (singular) fit: see help('isSingular')
summary(model2)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Chao1 ~ scaledSpeed + scaledThig + scaledmetRate + scaledBiteRate +
## treatmentOrder + (1 | aquarium)
## Data: alphaDiversitySnails
##
## REML criterion at convergence: 1260.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4630 -0.6660 -0.1904 0.4812 3.5827
##
## Random effects:
## Groups Name Variance Std.Dev.
## aquarium (Intercept) 0 0.0
## Residual 95536 309.1
## Number of obs: 94, groups: aquarium, 46
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 577.8050 73.5052 86.0000 7.861 1.01e-11 ***
## scaledSpeed 20.4986 34.9952 86.0000 0.586 0.5596
## scaledThig 50.8947 35.2133 86.0000 1.445 0.1520
## scaledmetRate -35.7522 35.2867 86.0000 -1.013 0.3138
## scaledBiteRate 0.3146 37.6821 86.0000 0.008 0.9934
## treatmentOrderlow 9.9219 96.9460 86.0000 0.102 0.9187
## treatmentOrdermedium 187.7763 101.5574 86.0000 1.849 0.0679 .
## treatmentOrderxHigh 13.5906 101.7547 86.0000 0.134 0.8941
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) scldSp scldTh scldmR scldBR trtmntOrdrl trtmntOrdrm
## scaledSpeed -0.150
## scaledThig 0.012 -0.196
## scaledmetRt 0.189 -0.154 -0.295
## scaledBitRt -0.364 0.212 0.109 -0.180
## trtmntOrdrl -0.703 0.082 -0.079 -0.065 0.133
## trtmntOrdrm -0.772 0.198 0.035 -0.203 0.378 0.525
## trtmntOrdrH -0.797 0.114 -0.012 -0.221 0.446 0.537 0.631
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
dd<-dredge(model2, subset= ~treatmentOrder, evaluate=TRUE, rank=AICc)
## Warning in dredge(model2, subset = ~treatmentOrder, evaluate = TRUE, rank =
## AICc): comparing models fitted by REML
## Fixed term is "(Intercept)"
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
dd
## Global model call: lmer(formula = Chao1 ~ scaledSpeed + scaledThig + scaledmetRate +
## scaledBiteRate + treatmentOrder + (1 | aquarium), data = alphaDiversitySnails,
## na.action = na.fail)
## ---
## Model selection table
## (Intrc) sclBR scldR scldS scldT trtmO df logLik AICc delta weight
## 32 577.8 0.3146 -35.75 20.50 50.89 + 10 -630.178 1283.0 0.00 0.898
## 31 578.0 -35.70 20.44 50.86 + 9 -634.724 1289.6 6.58 0.033
## 28 584.3 -4.3690 -32.57 54.94 + 9 -634.823 1289.8 6.78 0.030
## 30 591.9 -6.5410 15.04 40.37 + 9 -635.174 1290.5 7.48 0.021
## 24 577.1 -5.2600 -20.75 30.52 + 9 -635.696 1291.5 8.53 0.013
## 27 581.3 -33.20 55.58 + 8 -639.348 1296.4 13.38 0.001
## 29 587.5 16.20 40.73 + 8 -639.719 1297.1 14.12 0.001
## 26 595.8 -9.6030 44.12 + 8 -639.729 1297.2 14.14 0.001
## 23 573.4 -21.48 31.68 + 8 -640.251 1298.2 15.19 0.000
## 22 586.0 -8.9420 25.76 + 8 -640.327 1298.3 15.34 0.000
## 20 586.8 -13.3700 -14.00 + 8 -640.547 1298.8 15.78 0.000
## 25 589.6 45.09 + 7 -644.271 1303.8 20.84 0.000
## 21 580.2 27.51 + 7 -644.885 1305.1 22.07 0.000
## 18 591.8 -15.1700 + 7 -645.051 1305.4 22.40 0.000
## 19 577.9 -15.31 + 7 -645.128 1305.6 22.55 0.000
## 17 582.2 + 6 -649.644 1312.3 29.25 0.000
## Models ranked by AICc(x)
## Random terms (all models):
## 1 | aquarium
ddAIC_C<-subset(dd, delta < 7)
ddAIC_C
## Global model call: lmer(formula = Chao1 ~ scaledSpeed + scaledThig + scaledmetRate +
## scaledBiteRate + treatmentOrder + (1 | aquarium), data = alphaDiversitySnails,
## na.action = na.fail)
## ---
## Model selection table
## (Intrc) sclBR scldR scldS scldT trtmO df logLik AICc delta weight
## 32 577.8 0.3146 -35.75 20.50 50.89 + 10 -630.178 1283.0 0.00 0.934
## 31 578.0 -35.70 20.44 50.86 + 9 -634.724 1289.6 6.58 0.035
## 28 584.3 -4.3690 -32.57 54.94 + 9 -634.823 1289.8 6.78 0.031
## Models ranked by AICc(x)
## Random terms (all models):
## 1 | aquarium
get.models(ddAIC_C, subset=TRUE)
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## $`32`
## Linear mixed model fit by REML ['lmerModLmerTest']
## Formula: Chao1 ~ scaledBiteRate + scaledmetRate + scaledSpeed + scaledThig +
## treatmentOrder + (1 | aquarium)
## Data: alphaDiversitySnails
## REML criterion at convergence: 1260.357
## Random effects:
## Groups Name Std.Dev.
## aquarium (Intercept) 0.0
## Residual 309.1
## Number of obs: 94, groups: aquarium, 46
## Fixed Effects:
## (Intercept) scaledBiteRate scaledmetRate
## 577.8050 0.3146 -35.7522
## scaledSpeed scaledThig treatmentOrderlow
## 20.4986 50.8947 9.9219
## treatmentOrdermedium treatmentOrderxHigh
## 187.7763 13.5906
## optimizer (nloptwrap) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings
##
## $`31`
## Linear mixed model fit by REML ['lmerModLmerTest']
## Formula: Chao1 ~ scaledmetRate + scaledSpeed + scaledThig + treatmentOrder +
## (1 | aquarium)
## Data: alphaDiversitySnails
## REML criterion at convergence: 1269.447
## Random effects:
## Groups Name Std.Dev.
## aquarium (Intercept) 0.0
## Residual 307.3
## Number of obs: 94, groups: aquarium, 46
## Fixed Effects:
## (Intercept) scaledmetRate scaledSpeed
## 578.028 -35.699 20.437
## scaledThig treatmentOrderlow treatmentOrdermedium
## 50.863 9.814 187.456
## treatmentOrderxHigh
## 13.212
## optimizer (nloptwrap) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings
##
## $`28`
## Linear mixed model fit by REML ['lmerModLmerTest']
## Formula:
## Chao1 ~ scaledBiteRate + scaledmetRate + scaledThig + treatmentOrder +
## (1 | aquarium)
## Data: alphaDiversitySnails
## REML criterion at convergence: 1269.645
## Random effects:
## Groups Name Std.Dev.
## aquarium (Intercept) 0.0
## Residual 307.9
## Number of obs: 94, groups: aquarium, 46
## Fixed Effects:
## (Intercept) scaledBiteRate scaledmetRate
## 584.263 -4.369 -32.570
## scaledThig treatmentOrderlow treatmentOrdermedium
## 54.939 5.253 175.981
## treatmentOrderxHigh
## 6.810
## optimizer (nloptwrap) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings
##
## attr(,"rank")
## function (x)
## do.call("rank", list(x))
## <environment: 0x0000024bd17f0418>
## attr(,"call")
## AICc(x)
## attr(,"class")
## [1] "function" "rankFunction"
## attr(,"beta")
## [1] "none"
ddMAc<-model.avg(ddAIC_C, subset= delta <7)
summary(ddMAc)
##
## Call:
## model.avg(object = ddAIC_C, subset = delta < 7)
##
## Component model call:
## lmer(formula = Chao1 ~ <3 unique rhs>, data = alphaDiversitySnails,
## na.action = na.fail)
##
## Component models:
## df logLik AICc delta weight
## 12345 10 -630.18 1283.01 0.00 0.93
## 2345 9 -634.72 1289.59 6.58 0.03
## 1245 9 -634.82 1289.79 6.78 0.03
##
## Term codes:
## scaledBiteRate scaledmetRate scaledSpeed scaledThig treatmentOrder
## 1 2 3 4 5
##
## Model-averaged coefficients:
## (full average)
## Estimate Std. Error Adjusted SE z value Pr(>|z|)
## (Intercept) 578.0159 73.2970 74.3672 7.772 <2e-16 ***
## scaledBiteRate 0.1563 36.9993 37.5396 0.004 0.9967
## scaledmetRate -35.6503 35.2473 35.7619 0.997 0.3188
## scaledSpeed 19.8516 34.5913 35.0913 0.566 0.5716
## scaledThig 51.0208 35.1808 35.6944 1.429 0.1529
## treatmentOrderlow 9.7713 96.8789 98.2936 0.099 0.9208
## treatmentOrdermedium 187.3941 101.2342 102.7121 1.824 0.0681 .
## treatmentOrderxHigh 13.3642 101.3606 102.8407 0.130 0.8966
##
## (conditional average)
## Estimate Std. Error Adjusted SE z value Pr(>|z|)
## (Intercept) 578.016 73.297 74.367 7.772 <2e-16 ***
## scaledBiteRate 0.162 37.659 38.209 0.004 0.9966
## scaledmetRate -35.650 35.247 35.762 0.997 0.3188
## scaledSpeed 20.496 34.960 35.471 0.578 0.5634
## scaledThig 51.021 35.181 35.694 1.429 0.1529
## treatmentOrderlow 9.771 96.879 98.294 0.099 0.9208
## treatmentOrdermedium 187.394 101.234 102.712 1.824 0.0681 .
## treatmentOrderxHigh 13.364 101.361 102.841 0.130 0.8966
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# observed
model3<-lmer(Observed~scaledSpeed*treatmentOrder + scaledThig*treatmentOrder + scaledmetRate*treatmentOrder+ scaledBiteRate*treatmentOrder +treatmentOrder+ (1|aquarium), data=alphaDiversitySnails, na.action=na.fail)
summary(model3)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## Observed ~ scaledSpeed * treatmentOrder + scaledThig * treatmentOrder +
## scaledmetRate * treatmentOrder + scaledBiteRate * treatmentOrder +
## treatmentOrder + (1 | aquarium)
## Data: alphaDiversitySnails
##
## REML criterion at convergence: 984.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.0418 -0.6155 -0.1443 0.5071 2.6671
##
## Random effects:
## Groups Name Variance Std.Dev.
## aquarium (Intercept) 1367 36.97
## Residual 14653 121.05
## Number of obs: 94, groups: aquarium, 46
##
## Fixed effects:
## Estimate Std. Error df t value
## (Intercept) 345.438 34.709 49.920 9.952
## scaledSpeed -4.676 28.726 73.360 -0.163
## treatmentOrderlow 23.603 47.666 46.433 0.495
## treatmentOrdermedium 99.481 45.792 41.817 2.172
## treatmentOrderxHigh 48.975 46.369 40.829 1.056
## scaledThig 30.454 36.399 73.274 0.837
## scaledmetRate -2.386 35.319 73.998 -0.068
## scaledBiteRate 1.873 28.975 73.492 0.065
## scaledSpeed:treatmentOrderlow -3.665 50.038 65.848 -0.073
## scaledSpeed:treatmentOrdermedium 78.948 40.880 70.515 1.931
## scaledSpeed:treatmentOrderxHigh -3.100 40.905 73.412 -0.076
## treatmentOrderlow:scaledThig 20.727 47.110 72.660 0.440
## treatmentOrdermedium:scaledThig 26.742 48.801 73.996 0.548
## treatmentOrderxHigh:scaledThig -18.059 47.462 73.999 -0.380
## treatmentOrderlow:scaledmetRate -29.486 44.636 72.600 -0.661
## treatmentOrdermedium:scaledmetRate 44.725 47.124 73.911 0.949
## treatmentOrderxHigh:scaledmetRate -53.316 50.770 69.549 -1.050
## treatmentOrderlow:scaledBiteRate 10.650 48.893 69.493 0.218
## treatmentOrdermedium:scaledBiteRate -48.916 47.178 73.957 -1.037
## treatmentOrderxHigh:scaledBiteRate 7.046 41.669 72.338 0.169
## Pr(>|t|)
## (Intercept) 1.92e-13 ***
## scaledSpeed 0.8711
## treatmentOrderlow 0.6228
## treatmentOrdermedium 0.0355 *
## treatmentOrderxHigh 0.2971
## scaledThig 0.4055
## scaledmetRate 0.9463
## scaledBiteRate 0.9486
## scaledSpeed:treatmentOrderlow 0.9418
## scaledSpeed:treatmentOrdermedium 0.0575 .
## scaledSpeed:treatmentOrderxHigh 0.9398
## treatmentOrderlow:scaledThig 0.6613
## treatmentOrdermedium:scaledThig 0.5853
## treatmentOrderxHigh:scaledThig 0.7047
## treatmentOrderlow:scaledmetRate 0.5110
## treatmentOrdermedium:scaledmetRate 0.3457
## treatmentOrderxHigh:scaledmetRate 0.2973
## treatmentOrderlow:scaledBiteRate 0.8282
## treatmentOrdermedium:scaledBiteRate 0.3032
## treatmentOrderxHigh:scaledBiteRate 0.8662
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE) or
## vcov(x) if you need it
model3<-lmer(Observed~scaledSpeed + scaledThig + scaledmetRate+ scaledBiteRate +treatmentOrder+ (1|aquarium), data=alphaDiversitySnails, na.action=na.fail)
summary(model3)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## Observed ~ scaledSpeed + scaledThig + scaledmetRate + scaledBiteRate +
## treatmentOrder + (1 | aquarium)
## Data: alphaDiversitySnails
##
## REML criterion at convergence: 1107.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.7907 -0.7048 -0.1172 0.5325 2.6935
##
## Random effects:
## Groups Name Variance Std.Dev.
## aquarium (Intercept) 598.1 24.46
## Residual 15627.7 125.01
## Number of obs: 94, groups: aquarium, 46
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 338.1812 30.7308 51.5963 11.005 3.82e-15 ***
## scaledSpeed 10.1495 14.3928 85.7930 0.705 0.4826
## scaledThig 21.9088 14.4597 84.6334 1.515 0.1335
## scaledmetRate -16.6005 14.6652 69.0770 -1.132 0.2616
## scaledBiteRate -0.1211 15.5019 85.9330 -0.008 0.9938
## treatmentOrderlow 39.2372 40.7496 39.1903 0.963 0.3415
## treatmentOrdermedium 105.4771 42.5884 44.2274 2.477 0.0172 *
## treatmentOrderxHigh 38.7349 42.6525 45.1717 0.908 0.3686
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) scldSp scldTh scldmR scldBR trtmntOrdrl trtmntOrdrm
## scaledSpeed -0.150
## scaledThig 0.007 -0.201
## scaledmetRt 0.188 -0.144 -0.300
## scaledBitRt -0.359 0.214 0.106 -0.178
## trtmntOrdrl -0.701 0.082 -0.075 -0.064 0.132
## trtmntOrdrm -0.768 0.196 0.039 -0.202 0.369 0.522
## trtmntOrdrH -0.793 0.111 -0.007 -0.219 0.439 0.534 0.623
dd<-dredge(model3, subset= ~treatmentOrder, evaluate=TRUE, rank=AICc)
## Warning in dredge(model3, subset = ~treatmentOrder, evaluate = TRUE, rank =
## AICc): comparing models fitted by REML
## Fixed term is "(Intercept)"
dd
## Global model call: lmer(formula = Observed ~ scaledSpeed + scaledThig + scaledmetRate +
## scaledBiteRate + treatmentOrder + (1 | aquarium), data = alphaDiversitySnails,
## na.action = na.fail)
## ---
## Model selection table
## (Intrc) sclBR scldR scldS scldT trtmO df logLik AICc delta weight
## 32 338.2 -0.1211 -16.600 10.150 21.91 + 10 -553.806 1130.3 0.00 0.787
## 31 338.1 -16.620 10.170 21.91 + 9 -557.463 1135.1 4.81 0.071
## 28 341.4 -2.4850 -15.110 23.99 + 9 -557.639 1135.4 5.16 0.060
## 30 344.8 -3.1890 7.832 16.94 + 9 -558.050 1136.2 5.98 0.040
## 24 338.7 -2.1150 -9.842 14.610 + 9 -558.517 1137.2 6.91 0.025
## 27 339.8 -15.470 24.31 + 8 -561.283 1140.3 10.00 0.005
## 29 342.8 8.436 17.02 + 8 -561.714 1141.1 10.86 0.003
## 26 346.7 -4.8970 18.99 + 8 -561.775 1141.2 10.98 0.003
## 23 337.3 -10.110 15.070 + 8 -562.184 1142.1 11.80 0.002
## 22 343.0 -3.7230 12.530 + 8 -562.328 1142.3 12.09 0.002
## 20 343.4 -6.0480 -6.746 + 8 -562.617 1142.9 12.67 0.001
## 25 343.8 19.39 + 7 -565.448 1146.2 15.94 0.000
## 21 340.8 13.280 + 7 -566.000 1147.3 17.04 0.000
## 18 346.0 -6.8750 + 7 -566.282 1147.9 17.60 0.000
## 19 339.6 -7.306 + 7 -566.325 1148.0 17.69 0.000
## 17 341.9 + 6 -570.004 1153.0 22.71 0.000
## Models ranked by AICc(x)
## Random terms (all models):
## 1 | aquarium
ddAIC_C<-subset(dd, delta < 7)
ddAIC_C
## Global model call: lmer(formula = Observed ~ scaledSpeed + scaledThig + scaledmetRate +
## scaledBiteRate + treatmentOrder + (1 | aquarium), data = alphaDiversitySnails,
## na.action = na.fail)
## ---
## Model selection table
## (Intrc) sclBR scldR scldS scldT trtmO df logLik AICc delta weight
## 32 338.2 -0.1211 -16.600 10.150 21.91 + 10 -553.806 1130.3 0.00 0.801
## 31 338.1 -16.620 10.170 21.91 + 9 -557.463 1135.1 4.81 0.072
## 28 341.4 -2.4850 -15.110 23.99 + 9 -557.639 1135.4 5.16 0.061
## 30 344.8 -3.1890 7.832 16.94 + 9 -558.050 1136.2 5.98 0.040
## 24 338.7 -2.1150 -9.842 14.610 + 9 -558.517 1137.2 6.91 0.025
## Models ranked by AICc(x)
## Random terms (all models):
## 1 | aquarium
get.models(ddAIC_C, subset=TRUE)
## $`32`
## Linear mixed model fit by REML ['lmerModLmerTest']
## Formula:
## Observed ~ scaledBiteRate + scaledmetRate + scaledSpeed + scaledThig +
## treatmentOrder + (1 | aquarium)
## Data: alphaDiversitySnails
## REML criterion at convergence: 1107.611
## Random effects:
## Groups Name Std.Dev.
## aquarium (Intercept) 24.46
## Residual 125.01
## Number of obs: 94, groups: aquarium, 46
## Fixed Effects:
## (Intercept) scaledBiteRate scaledmetRate
## 338.1812 -0.1211 -16.6005
## scaledSpeed scaledThig treatmentOrderlow
## 10.1495 21.9088 39.2372
## treatmentOrdermedium treatmentOrderxHigh
## 105.4771 38.7349
##
## $`31`
## Linear mixed model fit by REML ['lmerModLmerTest']
## Formula:
## Observed ~ scaledmetRate + scaledSpeed + scaledThig + treatmentOrder +
## (1 | aquarium)
## Data: alphaDiversitySnails
## REML criterion at convergence: 1114.926
## Random effects:
## Groups Name Std.Dev.
## aquarium (Intercept) 24.46
## Residual 124.27
## Number of obs: 94, groups: aquarium, 46
## Fixed Effects:
## (Intercept) scaledmetRate scaledSpeed
## 338.11 -16.62 10.17
## scaledThig treatmentOrderlow treatmentOrdermedium
## 21.91 39.28 105.57
## treatmentOrderxHigh
## 38.86
##
## $`28`
## Linear mixed model fit by REML ['lmerModLmerTest']
## Formula:
## Observed ~ scaledBiteRate + scaledmetRate + scaledThig + treatmentOrder +
## (1 | aquarium)
## Data: alphaDiversitySnails
## REML criterion at convergence: 1115.278
## Random effects:
## Groups Name Std.Dev.
## aquarium (Intercept) 23.48
## Residual 124.80
## Number of obs: 94, groups: aquarium, 46
## Fixed Effects:
## (Intercept) scaledBiteRate scaledmetRate
## 341.361 -2.485 -15.107
## scaledThig treatmentOrderlow treatmentOrdermedium
## 23.988 36.892 99.774
## treatmentOrderxHigh
## 35.469
##
## $`30`
## Linear mixed model fit by REML ['lmerModLmerTest']
## Formula:
## Observed ~ scaledBiteRate + scaledSpeed + scaledThig + treatmentOrder +
## (1 | aquarium)
## Data: alphaDiversitySnails
## REML criterion at convergence: 1116.1
## Random effects:
## Groups Name Std.Dev.
## aquarium (Intercept) 25.9
## Residual 125.0
## Number of obs: 94, groups: aquarium, 46
## Fixed Effects:
## (Intercept) scaledBiteRate scaledSpeed
## 344.818 -3.189 7.832
## scaledThig treatmentOrderlow treatmentOrdermedium
## 16.941 36.248 95.496
## treatmentOrderxHigh
## 28.039
##
## $`24`
## Linear mixed model fit by REML ['lmerModLmerTest']
## Formula:
## Observed ~ scaledBiteRate + scaledmetRate + scaledSpeed + treatmentOrder +
## (1 | aquarium)
## Data: alphaDiversitySnails
## REML criterion at convergence: 1117.033
## Random effects:
## Groups Name Std.Dev.
## aquarium (Intercept) 33.85
## Residual 124.03
## Number of obs: 94, groups: aquarium, 46
## Fixed Effects:
## (Intercept) scaledBiteRate scaledmetRate
## 338.658 -2.115 -9.842
## scaledSpeed treatmentOrderlow treatmentOrdermedium
## 14.606 43.549 100.875
## treatmentOrderxHigh
## 38.137
##
## attr(,"rank")
## function (x)
## do.call("rank", list(x))
## <environment: 0x0000024bd43397c0>
## attr(,"call")
## AICc(x)
## attr(,"class")
## [1] "function" "rankFunction"
## attr(,"beta")
## [1] "none"
ddMAc<-model.avg(ddAIC_C, subset= delta <7)
summary(ddMAc)
##
## Call:
## model.avg(object = ddAIC_C, subset = delta < 7)
##
## Component model call:
## lmer(formula = Observed ~ <5 unique rhs>, data = alphaDiversitySnails,
## na.action = na.fail)
##
## Component models:
## df logLik AICc delta weight
## 12345 10 -553.81 1130.26 0.00 0.80
## 2345 9 -557.46 1135.07 4.81 0.07
## 1245 9 -557.64 1135.42 5.16 0.06
## 1345 9 -558.05 1136.24 5.98 0.04
## 1235 9 -558.52 1137.18 6.91 0.03
##
## Term codes:
## scaledBiteRate scaledmetRate scaledSpeed scaledThig treatmentOrder
## 1 2 3 4 5
##
## Model-averaged coefficients:
## (full average)
## Estimate Std. Error Adjusted SE z value Pr(>|z|)
## (Intercept) 338.6484 30.5820 31.0270 10.915 <2e-16 ***
## scaledBiteRate -0.4298 14.9201 15.1371 0.028 0.9773
## scaledmetRate -15.6719 14.7157 14.9190 1.050 0.2935
## scaledSpeed 9.5540 14.1434 14.3430 0.666 0.5053
## scaledThig 21.2820 14.6673 14.8684 1.431 0.1523
## treatmentOrderlow 39.0861 40.7301 41.3236 0.946 0.3442
## treatmentOrdermedium 104.6191 42.3674 42.9833 2.434 0.0149 *
## treatmentOrderxHigh 38.1000 42.3605 42.9766 0.887 0.3753
##
## (conditional average)
## Estimate Std. Error Adjusted SE z value Pr(>|z|)
## (Intercept) 338.6484 30.5820 31.0270 10.915 <2e-16 ***
## scaledBiteRate -0.4634 15.4914 15.7168 0.029 0.9765
## scaledmetRate -16.3295 14.6595 14.8721 1.098 0.2722
## scaledSpeed 10.1719 14.3766 14.5856 0.697 0.4856
## scaledThig 21.8335 14.4452 14.6546 1.490 0.1363
## treatmentOrderlow 39.0861 40.7301 41.3236 0.946 0.3442
## treatmentOrdermedium 104.6191 42.3674 42.9833 2.434 0.0149 *
## treatmentOrderxHigh 38.1000 42.3605 42.9766 0.887 0.3753
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
rm(dd, ddAIC_C, ddMAc, model1, model2, model3)
can carrot juice consumptions explain alpha diversity or treatment
on palatability?
###Can alpha diversity increase be explained by consumption of carrot juice?
model1<-lmer(Shannon~Pretraining+ (1|aquarium), data=alphaDiversitySnails)
summary(model1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Shannon ~ Pretraining + (1 | aquarium)
## Data: alphaDiversitySnails
##
## REML criterion at convergence: 111.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.5191 -0.3760 0.1103 0.5080 1.9157
##
## Random effects:
## Groups Name Variance Std.Dev.
## aquarium (Intercept) 0.07545 0.2747
## Residual 0.11446 0.3383
## Number of obs: 94, groups: aquarium, 46
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 4.020000 0.117524 90.537245 34.206 <2e-16 ***
## Pretraining -0.001601 0.006802 78.056065 -0.235 0.815
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## Pretraining -0.885
model2<-lmer(Shannon~Posttraining+ (1|aquarium), data=alphaDiversitySnails)
summary(model2)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Shannon ~ Posttraining + (1 | aquarium)
## Data: alphaDiversitySnails
##
## REML criterion at convergence: 110
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.5283 -0.3988 0.1410 0.5517 2.1217
##
## Random effects:
## Groups Name Variance Std.Dev.
## aquarium (Intercept) 0.07167 0.2677
## Residual 0.11392 0.3375
## Number of obs: 94, groups: aquarium, 46
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.915596 0.082080 85.340487 47.705 <2e-16 ***
## Posttraining 0.007075 0.005482 88.779165 1.291 0.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## Posttrainng -0.755
alphaDiversitySnails$Pretraining<-as.numeric(alphaDiversitySnails$Pretraining)
alphaDiversitySnails$Posttraining<-as.numeric(alphaDiversitySnails$Posttraining)
Alltraining2<-rowSums(alphaDiversitySnails[ , c("Pretraining", "Posttraining")])
alphaDiversitySnails<-cbind(alphaDiversitySnails, Alltraining2)
model3<-lmer(Shannon~Alltraining2+ (1|aquarium), data=alphaDiversitySnails) ###t = 0.457 p =0.649
summary(model3)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Shannon ~ Alltraining2 + (1 | aquarium)
## Data: alphaDiversitySnails
##
## REML criterion at convergence: 111.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.6061 -0.3803 0.0951 0.5237 2.0603
##
## Random effects:
## Groups Name Variance Std.Dev.
## aquarium (Intercept) 0.07689 0.2773
## Residual 0.11286 0.3360
## Number of obs: 94, groups: aquarium, 46
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.923283 0.112933 91.406926 34.74 <2e-16 ***
## Alltraining2 0.002712 0.003713 80.793336 0.73 0.467
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## Alltrainng2 -0.875
# observed
model4<-lmer(Observed~Pretraining+ (1|aquarium), data=alphaDiversitySnails)
summary(model4)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Observed ~ Pretraining + (1 | aquarium)
## Data: alphaDiversitySnails
##
## REML criterion at convergence: 1168
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.7228 -0.7244 -0.1744 0.5999 2.5881
##
## Random effects:
## Groups Name Variance Std.Dev.
## aquarium (Intercept) 2629 51.27
## Residual 14311 119.63
## Number of obs: 94, groups: aquarium, 46
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 409.985 37.191 91.796 11.024 <2e-16 ***
## Pretraining -1.629 2.228 86.621 -0.731 0.467
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## Pretraining -0.919
model5<-lmer(Observed~Posttraining+ (1|aquarium), data=alphaDiversitySnails)
summary(model5)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Observed ~ Posttraining + (1 | aquarium)
## Data: alphaDiversitySnails
##
## REML criterion at convergence: 1168.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.7680 -0.7035 -0.1683 0.6490 2.6866
##
## Random effects:
## Groups Name Variance Std.Dev.
## aquarium (Intercept) 2977 54.56
## Residual 14114 118.80
## Number of obs: 94, groups: aquarium, 46
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 379.6674 24.9718 82.9137 15.204 <2e-16 ***
## Posttraining 0.4585 1.7529 91.9983 0.262 0.794
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## Posttrainng -0.802
model6<-lmer(Observed~Alltraining2+ (1|aquarium), data=alphaDiversitySnails) ###t = 0.457 p =0.649
summary(model6)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Observed ~ Alltraining2 + (1 | aquarium)
## Data: alphaDiversitySnails
##
## REML criterion at convergence: 1169.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.7438 -0.7264 -0.1789 0.5867 2.6285
##
## Random effects:
## Groups Name Variance Std.Dev.
## aquarium (Intercept) 3034 55.09
## Residual 14075 118.64
## Number of obs: 94, groups: aquarium, 46
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 391.3135 35.7014 91.9865 10.961 <2e-16 ***
## Alltraining2 -0.2402 1.2119 88.5899 -0.198 0.843
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## Alltrainng2 -0.908
##does treatment affect willingness to consume carrot juice?
model3b<-lmer(Pretraining~treatmentOrder+ (1|aquarium), data=alphaDiversitySnails) ###NO
## boundary (singular) fit: see help('isSingular')
summary(model3b)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Pretraining ~ treatmentOrder + (1 | aquarium)
## Data: alphaDiversitySnails
##
## REML criterion at convergence: 590.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.35343 -0.71316 -0.02377 0.80552 2.29499
##
## Random effects:
## Groups Name Variance Std.Dev.
## aquarium (Intercept) 0.00 0.000
## Residual 36.11 6.009
## Number of obs: 94, groups: aquarium, 46
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 15.8571 1.3114 90.0000 12.092 <2e-16 ***
## treatmentOrderlow -0.5714 1.8546 90.0000 -0.308 0.759
## treatmentOrdermedium -0.6488 1.7957 90.0000 -0.361 0.719
## treatmentOrderxHigh -0.7143 1.7348 90.0000 -0.412 0.682
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) trtmntOrdrl trtmntOrdrm
## trtmntOrdrl -0.707
## trtmntOrdrm -0.730 0.516
## trtmntOrdrH -0.756 0.535 0.552
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
DMSO effect on behaviour
metadataDMSO<-read.csv(file="metadata_DMSO_control.csv",header=TRUE)
model1<-lmer(metabolicRate~ treatmentOrder + (1|aquarium), data = metadataDMSO)
## boundary (singular) fit: see help('isSingular')
summary(model1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: metabolicRate ~ treatmentOrder + (1 | aquarium)
## Data: metadataDMSO
##
## REML criterion at convergence: -31.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.15896 -0.56122 -0.00884 0.73184 2.24282
##
## Random effects:
## Groups Name Variance Std.Dev.
## aquarium (Intercept) 0.00000 0.0000
## Residual 0.02697 0.1642
## Number of obs: 51, groups: aquarium, 25
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 0.38788 0.03501 49.00000 11.078 6.03e-15 ***
## treatmentOrderDMSO 0.07677 0.04643 49.00000 1.654 0.105
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trtmntODMSO -0.754
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
model2<-lmer(biteRateChange~ treatmentOrder + (1|aquarium), data = metadataDMSO)
summary(model2)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: biteRateChange ~ treatmentOrder + (1 | aquarium)
## Data: metadataDMSO
##
## REML criterion at convergence: 357.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.4881 -0.3676 0.1694 0.5522 1.9817
##
## Random effects:
## Groups Name Variance Std.Dev.
## aquarium (Intercept) 10.68 3.269
## Residual 66.47 8.153
## Number of obs: 51, groups: aquarium, 25
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) -7.754 1.990 24.895 -3.897 0.00065 ***
## treatmentOrderDMSO 1.749 2.682 20.194 0.652 0.52158
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trtmntODMSO -0.742
model3<-lmer(Speed~ treatmentOrder + (1|aquarium), data = metadataDMSO)
## boundary (singular) fit: see help('isSingular')
summary(model3)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Speed ~ treatmentOrder + (1 | aquarium)
## Data: metadataDMSO
##
## REML criterion at convergence: 26.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.0720 -0.5661 -0.1021 0.5852 2.7125
##
## Random effects:
## Groups Name Variance Std.Dev.
## aquarium (Intercept) 0.00000 0.0000
## Residual 0.08754 0.2959
## Number of obs: 51, groups: aquarium, 25
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 0.65747 0.06308 49.00000 10.423 4.99e-14 ***
## treatmentOrderDMSO -0.12951 0.08365 49.00000 -1.548 0.128
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trtmntODMSO -0.754
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
model4<-lmer(Thigmotaxis~ treatmentOrder + (1|aquarium), data = metadataDMSO)
summary(model4)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Thigmotaxis ~ treatmentOrder + (1 | aquarium)
## Data: metadataDMSO
##
## REML criterion at convergence: 0.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.4711 -0.5842 0.1184 0.6963 1.3237
##
## Random effects:
## Groups Name Variance Std.Dev.
## aquarium (Intercept) 0.008798 0.0938
## Residual 0.044691 0.2114
## Number of obs: 51, groups: aquarium, 25
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 0.57505 0.05292 29.89423 10.867 6.65e-12 ***
## treatmentOrderDMSO -0.06871 0.07150 25.34995 -0.961 0.346
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## trtmntODMSO -0.740
Differential Abundance at OTU level
rm(list = ls(all.names = TRUE))
library(Maaslin2)
metadata <-read.table("metadata_alphaDiversity.txt", row.names="Row.names", header = TRUE) ###this has the scaled data for analyses, example in beta diversity
otus <- read.table("otu-table-centroids-iddef0-400bp.txt")
# OTU differential abundance analysis
fit_data = Maaslin2(
input_data = otus,
input_metadata = metadata,
output = "Maaslin2_output_OTUs_AllFixedTerms",
fixed_effects = c("treatmentOrder", "scaledBiteRate", "scaledThig", "scaledSpeed", "scaledmetRate"),
random_effects = c("aquarium"),
reference = c("treatmentOrder,control"),
plot_scatter = FALSE)
KO <- read.table(file='KO_pred_metagenome_unstrat.tsv', header=TRUE)
#Assigning row names from 1st column
rownames(KO) <- KO[,1]
KO = subset(KO, select = -function. )
KO[] <- lapply(KO, as.integer)
PA <- read.table(file='path_abun_unstrat.tsv', header=TRUE)
#Assigning row names from 1st column
rownames(PA) <- PA[,1]
##remove the duplicate column
PA = subset(PA, select = -pathway )
##make values intergers
PA[] <- lapply(PA, as.integer)
#this metadata file has the full fastq sample names (not the shortened names) that were used in the picrust analysis.
meta<-read.table(file="metadata_picrust.txt", header=TRUE, row.names = "row.names")
# Edit metadata for downstream analyses: invert the sign (-/+) for biteRateChange
# (more intuitive to interpret where higher values = better memory)
meta$biteRateChange = meta$biteRateChange*(-1)
##scale variables
meta$scaledThig<-scale(meta$Thigmotaxis)
meta$scaledSpeed<-scale(meta$Speed)
meta$scaledBiteRate<-scale(meta$biteRateChange)
meta$scaledmetRate<-scale(meta$metabolicRate)
names(meta)
fit_data2 = Maaslin2(
input_data = KO,
input_metadata = meta,
output = "Maaslin2_output_KO_AllFixedTerms",
fixed_effects = c("treatmentOrder", "scaledBiteRate", "scaledThig", "scaledSpeed", "scaledmetRate"),
random_effects = c("aquarium"),
reference = c("treatmentOrder,control"),
plot_scatter = FALSE)
fit_data3 = Maaslin2(
input_data = PA,
input_metadata = meta,
output = "Maaslin2_output_PA_AllFixedTerms",
fixed_effects = c("treatmentOrder", "scaledBiteRate", "scaledThig", "scaledSpeed", "scaledmetRate"),
random_effects = c("aquarium"),
reference = c("treatmentOrder,control"),
plot_scatter = FALSE)
sessionInfo()
## R version 4.2.3 (2023-03-15 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19045)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_United Kingdom.utf8
## [2] LC_CTYPE=English_United Kingdom.utf8
## [3] LC_MONETARY=English_United Kingdom.utf8
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United Kingdom.utf8
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] MuMIn_1.47.5 usdm_1.1-18 raster_3.6-20
## [4] sp_1.6-1 compositions_2.0-6 metagenomeSeq_1.40.0
## [7] RColorBrewer_1.1-3 glmnet_4.1-7 limma_3.54.2
## [10] Biobase_2.58.0 BiocGenerics_0.44.0 lmerTest_3.1-3
## [13] lme4_1.1-33 Matrix_1.5-3 phyloseq_1.42.0
## [16] lubridate_1.9.2 forcats_1.0.0 stringr_1.5.0
## [19] dplyr_1.1.2 purrr_1.0.1 readr_2.1.4
## [22] tidyr_1.3.0 tibble_3.2.1 ggplot2_3.4.2
## [25] tidyverse_2.0.0 vegan_2.6-4 lattice_0.20-45
## [28] permute_0.9-7
##
## loaded via a namespace (and not attached):
## [1] minqa_1.2.5 colorspace_2.1-0 XVector_0.38.0
## [4] rstudioapi_0.14 fansi_1.0.4 codetools_0.2-19
## [7] splines_4.2.3 cachem_1.0.8 robustbase_0.95-1
## [10] knitr_1.43 ade4_1.7-22 jsonlite_1.8.4
## [13] nloptr_2.0.3 cluster_2.1.4 compiler_4.2.3
## [16] fastmap_1.1.1 cli_3.6.1 htmltools_0.5.5
## [19] tools_4.2.3 igraph_1.4.2 gtable_0.3.3
## [22] glue_1.6.2 GenomeInfoDbData_1.2.9 reshape2_1.4.4
## [25] Rcpp_1.0.10 jquerylib_0.1.4 vctrs_0.6.1
## [28] Biostrings_2.66.0 rhdf5filters_1.10.1 multtest_2.54.0
## [31] ape_5.7-1 nlme_3.1-162 iterators_1.0.14
## [34] tensorA_0.36.2 xfun_0.39 timechange_0.2.0
## [37] lifecycle_1.0.3 gtools_3.9.4 terra_1.7-29
## [40] DEoptimR_1.0-14 zlibbioc_1.44.0 MASS_7.3-58.2
## [43] scales_1.2.1 hms_1.1.3 parallel_4.2.3
## [46] biomformat_1.26.0 rhdf5_2.42.1 yaml_2.3.7
## [49] sass_0.4.6 stringi_1.7.12 highr_0.10
## [52] S4Vectors_0.36.2 foreach_1.5.2 caTools_1.18.2
## [55] boot_1.3-28.1 shape_1.4.6 GenomeInfoDb_1.34.9
## [58] rlang_1.1.0 pkgconfig_2.0.3 bitops_1.0-7
## [61] matrixStats_1.0.0 Wrench_1.16.0 evaluate_0.21
## [64] Rhdf5lib_1.20.0 tidyselect_1.2.0 plyr_1.8.8
## [67] magrittr_2.0.3 R6_2.5.1 IRanges_2.32.0
## [70] gplots_3.1.3 generics_0.1.3 DBI_1.1.3
## [73] pillar_1.9.0 withr_2.5.0 mgcv_1.8-42
## [76] survival_3.5-5 RCurl_1.98-1.12 bayesm_3.1-5
## [79] crayon_1.5.2 KernSmooth_2.23-21 utf8_1.2.3
## [82] tzdb_0.4.0 rmarkdown_2.22 locfit_1.5-9.8
## [85] grid_4.2.3 data.table_1.14.8 digest_0.6.31
## [88] numDeriv_2016.8-1.1 stats4_4.2.3 munsell_0.5.0
## [91] bslib_0.5.0